
The XML approach for the DAQ
initialization files

(plus update on the status of the DAQ project)

G. Chiodini, S. Magni, D. Menasce,
L. Uplegger, D. Zhang

11/07/02 The XML Approach for the DAQ Initialization Files 2

The DAQ initialization files
• A DAQ system gathers information for initialization of hardware
 and for appropriately start/stop/resume a run from a set of files
 containing the relevant data. Usually these are plain ASCII files.

• There are two possible approaches to the problem of making the
 data contained in an initialization file available to a program that
 needs them to address hardware components:

� the initialization file is just a collection of lines containing
 characters: ⇒ needs a set of ad-hoc lines of code to read
 them in memory (validation of syntax is also written ad-hoc)

� the initialization file is an xml file, with an associated dtd
 (data-translation-dictionary). Parsing and validation is
 accomplished by methods available in the xml parser library

11/07/02 The XML Approach for the DAQ Initialization Files 3

The beam test initialization file I

• First step to this goal is the design of the elements required to be
 present in the initialization file: they should reflect what the DAQ
 must be knowledgeable about (hardware components, their status,
 their mutual relationship and hierarchy,…)

• In the spirit of taking advantage of this test beam to approach new
 software technologies, to have time to learn their strengths and
 weaknesses and, at the same time, to provide flexible tools for
 the DAQ itself, we have chosen to adopt the second strategy:

 we have defined an xml syntax that models our hardware and
 make use of a parser/validator to gather data in memory.

11/07/02 The XML Approach for the DAQ Initialization Files 4

Branch
bus # 1
slot # 1

The beam test initialization file II

MezzanineMezzanine
PTAPTA

Clock
…Chip ID=“B”Chip ID=“B”

Kill mask

Inject mask
Vi(bp)
Viff
…

Control
voltages

Chip ID=“A”Chip ID=“A”
Kill mask

Inject mask
Vi(bp)
Viff
…

Control
voltages

Clock
Memory limit
Pre Fetch
… FPGA

11/07/02 The XML Approach for the DAQ Initialization Files 5

The beam test initialization file III
1

2

3

Pulser
(GPIB device)
Pulser

(GPIB device)

High/Low Voltage
CAEN Power Supply

(TCP-IP device)

High/Low Voltage
CAEN Power Supply

(TCP-IP device)

Initialization
File (XML)

Initialization
File (XML)

11/07/02 The XML Approach for the DAQ Initialization Files 6

Structure of the XML file
• The XML initialization file has been designed to closely resemble
 the hardware it is supposed to represent.

• Each hardware component is described by an embracing pair of
 XML tags with a clearly laid out structure. Each tag may also
 have qualifiers attached to it to further specify details of the
 particular equipment referenced.

 Let’s step through an example which describes our approach:

11/07/02 The XML Approach for the DAQ Initialization Files 7

<DAQConfigurations>

</DAQConfigurations>

Structure of the XML file
A pratical example

XML delimiting tagsXML delimiting tags

11/07/02 The XML Approach for the DAQ Initialization Files 8

<DAQConfigurations>

 <Branch Bus=“1” Slot=“1” Status=“1” Comment=“”>

 </Branch>

</DAQConfigurations>

Structure of the XML file

11/07/02 The XML Approach for the DAQ Initialization Files 9

<DAQConfigurations>

 <Branch Bus=“1” Slot=“1” Status=“1” Comment=“”>

 </Branch>

 <Branch Bus=“2” Slot=“2” Status=“1” Comment=“”>

 </Branch>

</DAQConfigurations>

Structure of the XML file

11/07/02 The XML Approach for the DAQ Initialization Files 10

<DAQConfigurations>

 <Branch Bus=“1” Slot=“i” Status=“1” Comment=“”>
 …………………………………….
 </Branch>

 <Branch Bus=“2” Slot=“j” Status=“1” Comment=“”>
 …………………………………….
 </Branch>

 <GPIB Version=“0.0.1” Comment=“PulseGenerator”>

 </GPIB>

 <CAEN Version=“0.0.1” Comment=“PowerSupply”>

 </CAEN>

</DAQConfigurations>

Structure of the XML file

Pulse
Generator

Pulse
Generator

Power
Supply
Power
Supply

11/07/02 The XML Approach for the DAQ Initialization Files 11

<DAQConfigurations>
 <Branch Bus=“1” Slot=“1” Status=“1” Comment=“”>

 <PTA DataSource=“Mezzanine” Comment=“Fake”>
 ………………………………
 </PTA>

 </Branch>
</DAQConfigurations>

Structure of the XML file

11/07/02 The XML Approach for the DAQ Initialization Files 12

<DAQConfigurations>
 <Branch Bus=“1” Slot=“1” Status=“1” Comment=“”>

 <PTA DataSource=“Mezzanine” Comment=“Fake”>
 ………………………………
 </PTA>

 <Mezzanine Comment=“”>

 </Mezzanine>

 </Branch>
</DAQConfigurations>

Structure of the XML file

11/07/02 The XML Approach for the DAQ Initialization Files 13

<DAQConfigurations>
 <Branch Bus=“1” Slot=“1” Status=“1” Comment=“”>

 <PTA DataSource=“Mezzanine” Comment=“Fake”>
 ………………………………
 </PTA>

 <Mezzanine Comment=“”>
 <Detector ID=“A” Type=“preFPIX2” Comment=“”>
 ……………………………
 </Detector>

 <Detector ID=“B” Type=“preFPIX2” Comment=“”>
 ……………………………
 </Detector>
 </Mezzanine>

 </Branch>
</DAQConfigurations>

Structure of the XML file

11/07/02 The XML Approach for the DAQ Initialization Files 14

<DAQConfigurations>
 <Branch Bus=“1” Slot=“1” Status=“1” Comment=“”>
 …………………………………
 <Mezzanine Comment=“”>
 <Detector ID=“A” Type=“preFPIX2” Comment=“”>
 <Vipb Value=“120” Comment=“”/>
 <Vtho Value=“60” Comment=“”/>
 …………………

 …………………
 …………………

 </Detector>
 </Mezzanine>

 </Branch>
</DAQConfigurations>

Structure of the XML file

11/07/02 The XML Approach for the DAQ Initialization Files 15

<DAQConfigurations>
 <Branch Bus=“1” Slot=“1” Status=“1” Comment=“”>
 …………………………………
 <Mezzanine Comment=“”>
 <Detector ID=“A” Type=“preFPIX2” Comment=“”>
 <Vipb Value=“120” Comment=“”/>
 <Vtho Value=“60” Comment=“”/>
 …………………
 <Cell Row=“15” Col=“4” Kill=“y” Inj=“y”>
 <Cell Row=“18” Col=“14” Kill=“y” Inj=“y”>

 …………………
 …………………

 </Detector>
 </Mezzanine>

 </Branch>
</DAQConfiguration>

Structure of the XML file

11/07/02 The XML Approach for the DAQ Initialization Files 16

Structure of the XML file
The process of definition goes on until all the details of the detector
and its associated electronics have been laid out.

The next step is the definition of a validation-dictionary to specify
which field is required, which is optional, how many elements at
least are necessary, which is the relative hierarchy and so on and
so forth. Such a dictionary is a dtd-file.

The syntax of a dtd-file is specified by the XML protocol (available
at http://www.w3.org/TR/REC-xml).

In a dtd-file you specify the syntax of your xml file

11/07/02 The XML Approach for the DAQ Initialization Files 17

Structure of the DTD file
How does an xml file specify its dtd definition?

<!DOCTYPE DAQConfigurations SYSTEM “DAQcfg.dtd”>

<DAQConfigurations>
 <Branch Bus=“1” Slot=“1” Status=“1” Comment=“”>
 …………………………………
 <Mezzanine Comment=“”>
 <Detector ID=“A” Type=“preFPIX2” Comment=“”>

 </Detector>
 </Mezzanine>

 </Branch>
</DAQConfiguration>

DAQcfg.xmlDAQcfg.xml

11/07/02 The XML Approach for the DAQ Initialization Files 18

Structure of the DTD file
<!ELEMENT DAQConfigurations (DAQ, GPIB, CAEN) >

Pulse
Generator

Pulse
Generator

Power
Supply
Power
Supply

11/07/02 The XML Approach for the DAQ Initialization Files 19

Structure of the DTD file
<!ELEMENT DAQConfigurations (DAQ, GPIB, CAEN) >

<!DOCTYPE DAQConfigurations SYSTEM “DAQcfg.dtd”>
<DAQConfigurations>

 <DAQ Version=“0.0.1” Comment=“”>
 …………………………………….
 </DAQ>

 <GPIB Version=“0.0.1” Comment=“PulseGenerator”>

 </GPIB>

 <CAEN Version=“0.0.1” Comment=“PowerSupply”>

 </CAEN>

</DAQConfigurations>

<!DOCTYPE DAQConfigurations SYSTEM “DAQcfg.dtd”>
<DAQConfigurations>

 <DAQ Version=“0.0.1” Comment=“”>
 …………………………………….
 </DAQ>

 <GPIB Version=“0.0.1” Comment=“PulseGenerator”>

 </GPIB>

 <CAEN Version=“0.0.1” Comment=“PowerSupply”>

 </CAEN>

</DAQConfigurations>

DAQcfg.xmlDAQcfg.xml

DAQcfg.dtdDAQcfg.dtd

11/07/02 The XML Approach for the DAQ Initialization Files 20

Structure of the DTD file
<!ELEMENT DAQConfigurations (DAQ, GPIB, CAEN) >

<!ELEMENT DAQ (DaqHome,
 LogFile,
 DaqMode,
 FakeData*,
 Branch+) >

<!DOCTYPE DAQConfigurations SYSTEM “DAQcfg.dtd”>
<DAQConfigurations>

 <DAQ Version=“0.0.1” Comment=“”>
 <DaqHome Value=“…” Comment=“…” />
 <LogFile Value=“…” Comment=“…” />
 <DaqMode Value=“…” Comment=“…” />
 <FakeData Interspill=“10” … />
 <Branch Bus=“…” Slot=“…”>
 </Branch>
 <Branch Bus=“…” Slot=“…”>
 </Branch>
 </DAQ>
</DAQConfigurations>

<!DOCTYPE DAQConfigurations SYSTEM “DAQcfg.dtd”>
<DAQConfigurations>

 <DAQ Version=“0.0.1” Comment=“”>
 <DaqHome Value=“…” Comment=“…” />
 <LogFile Value=“…” Comment=“…” />
 <DaqMode Value=“…” Comment=“…” />
 <FakeData Interspill=“10” … />
 <Branch Bus=“…” Slot=“…”>
 </Branch>
 <Branch Bus=“…” Slot=“…”>
 </Branch>
 </DAQ>
</DAQConfigurations>

DAQcfg.xmlDAQcfg.xml

DAQcfg.dtdDAQcfg.dtd

Optional field

More than one
instance allowed
(but at least one)

11/07/02 The XML Approach for the DAQ Initialization Files 21

Structure of the DTD file
<!ELEMENT DAQConfigurations (DAQ, GPIB, CAEN) >

<!ELEMENT DAQ (DaqHome,
 LogFile,
 DaqMode,
 FakeData*,
 Branch+) >
<!ATTLIST DAQ
 Version CDATA #REQUIRED
 Comment CDATA #IMPLIED
>

<!DOCTYPE DAQConfigurations SYSTEM “DAQcfg.dtd”>
<DAQConfigurations>

 <DAQ Version=“0.0.1” Comment=“Under development”>
 …………………………
 </DAQ>

</DAQConfigurations>

<!DOCTYPE DAQConfigurations SYSTEM “DAQcfg.dtd”>
<DAQConfigurations>

 <DAQ Version=“0.0.1” Comment=“Under development”>
 …………………………
 </DAQ>

</DAQConfigurations>

DAQcfg.xmlDAQcfg.xml

DAQcfg.dtdDAQcfg.dtd

11/07/02 The XML Approach for the DAQ Initialization Files 22

Parsing and validation
Once a DTD has been defined and a possible instance of an XML
file (based on the chosen DTD) has been implemented, we already
have two important benefits:

• People working on the GUI to manage the xml file communicate
 with people using the xml in the DAQ part just by means of
 the DTD definition. Should a new field be required, with specific
 fields and sub-fields, all is needed in order to share this info
 among the parties involved in the code development is just the
 DTD file itself, which uniquely defines what is and what is not
 allowed to be present in an xml file based on that particular
 grammar.

 Code development is made easier
 The DTD already represents the full documentation needed

11/07/02 The XML Approach for the DAQ Initialization Files 23

Parsing and validation
• The order in which fields are declared in the xml file is irrelevant:
 the parser automatically transfers fields and associated values
 in memory. This makes easy to add/remove elements in the
 configuration file without modifying the code.

The parser/validator we decided to use is xerces, available
at http://xml.apache.org/xerces-c (as usual, it is public domain
software, which easily integrates with Qt and JungoDriver).

The Qt library also provides a parser, but the current version has
no validation features, so we decided to use xerces

 More important, errors in the xml file are detected by the
 parser/validator with no need to stuff the code with consistency
 checks (the developer of the code is relieved from the tedious
 task of providing consistency check all along).

11/07/02 The XML Approach for the DAQ Initialization Files 24

Integration with the DAQ
• Let’s see how the parsing is actually implemented: open a
 dialog box to navigate the directory tree and select an xml file

 …
 CfgFile = QFileDialog::getOpenFileName(QString::null,
 "Configuration files (*.xml)",
 this);
 if (!CfgFile) {return;}

 …

 …
 CfgFile = QFileDialog::getOpenFileName(QString::null,
 "Configuration files (*.xml)",
 this);
 if (!CfgFile) {return;}

 …

11/07/02 The XML Approach for the DAQ Initialization Files 25

Integration with the DAQ
• Once the xml file is chosen, let’s open it, parse and validate

 DOMParser parser;
 parser.setValidationScheme(DOMParser::Val_Always);

 …

 DOMParser parser;
 parser.setValidationScheme(DOMParser::Val_Always);

 …

DOMTreeErrorReporter *errReporter = new DOMTreeErrorReporter();
parser.setErrorHandler(errReporter);

Enable validation capabilitiesEnable validation capabilities

Specify a class to handle
generated errors

Specify a class to handle
generated errors

 parser.parse(DAQConfigurator::CfgFile.c_str());
Do parsing AND validationDo parsing AND validation

for (std::vector<C_Branch*>::iterator i=DAQ->Branch.begin();
 i!=DAQ->Branch.end();
 i++) {
 cout << "DAQ->Branch->Mezzanine->Detectors[0]->Vibp->Value = " <<
 (*i)->Mezzanine->Detectors[0]->Vibp ->Value << endl;
}

Use variables read from xmlUse variables read from xml

11/07/02 The XML Approach for the DAQ Initialization Files 26

Results
• Once we defined the dtd for the initialization files and created an
 instance of an xml file, we tried to actually initialize and read
 a real detector.

• We did this remotely on the computer at Feynman using a
 preFPIX2Tb pixel device. After some bug-hunting we were able
 to perform a complete initialize/read-back cycle.

• At a certain point, unfortunately, we burned the device, so at
 this point we are deprived of the possibility to continue our tests
 since this was the only device available to us.

 This is a problem, since also code development becomes difficult
 if one cannot test parts as soon as they are supposed to work.

 A possible way out is to concentrate on an FPIX1 (we have one
 in Milano), but in general it would be wise to have at least two
 (or better three) devices of each kind ready for testing in the not
 to far future…

11/07/02 The XML Approach for the DAQ Initialization Files 27

To do
We think we have made a new significant step forward:

• Code to read/validate an xml initialization file exist and works
 properly (a utility class has been developed to this extent)

• A full cycle of initialization/read–back has been shown to work
 properly on a preFPIX2Tb detector

• This has been accomplished within the general framework we
 have developed (cooperating tasks accessing a shared memory)

Next steps

• Cooperate with Dehong Zhang on the xml editor (GUI)

• Try the same exercise with an FPIX1 detector (we need Brad to
 provide the necessary firmware for the mezzanine)

• Start working on auxiliary software to control external power
 supply and pulse generator (already have a working prototype)

11/07/02 The XML Approach for the DAQ Initialization Files 28

To do
Long range planning

• We still have not tried to write down events on disk: should be
 easy, but we have to do it…

• Event builder works, but we have not yet had the chance to test
 it under real conditions: to do this we need at least three
 working devices…

• Still no real thoughts about management of initialization files
 history (database, WEB interface and such…)

• We have a program that does calibrations (old Gabriele’s stuff):
 we need to re-implement it in the new framework (rather big
 project) and make it general enough to accommodate
 functionality for the different brands of pixel devices.

11/07/02 The XML Approach for the DAQ Initialization Files 29

To do
Long range planning (contd.)

• Almost no documentation has been provided yet

• Still no planning whatsoever of integration with other detectors.
 Keep in mind that our mission can be stated as follows:

 provide code to read out a PTA card, regardless of what it may
 contain at any given time; aside from this, provide specific
 code to initialize and calibrate pixels and control ancillary
 hardware components

• If a detector has the necessary equipment (mezzanine and
 corresponding firmware) to fill the PTA memories (with
 time-stamped data), integration is straightforward.

